
Daksh Upadhyay
work@dakshu.xyz | +1(XXX)-XXX-XXX |Website | GitHub

Education

Skills

Professional Experience
KeepWorks
Software Engineering Intern

 Create an open-source crate to query ISO country data to implement multiple currencies,

time zones and languages in our product. This allowed customers from various countries to use

our product.

 Design a procedural macro which made server-side sanitizing easy by allowing you to write

attributes on the struct declaration itself. The first open-source crate from KeepWorks, this

decreased time spent on sanitizing approximately 500 data structures across the codebase.

KeepWorks
Software Engineering Contractor – Backend Rust Team

 Lay foundations for backend applications, connect them to Yugabyte database and setup

migrations.

 Provide upgrades for our internal CLI tool to allow testing for all our projects and logs in one

console instance, this made testing twice as fast for our all our developers.

 Integrate gRPC and GraphQL microservices in a single rust project to facilitate communication

between them which allowed for easier integration between microservices in our products.

 Write CRUD operations with diesel and database schemas for our products.

Open-Source Projects
Octane

 Octane features a http implementation and its own multithreaded web server built from

scratch with express like routing.
 Provide SSL/TLS support with both OpenSSL and RustTLS.
 Use Tokio to provide multithreading at IO Level.
 Write integration tests and unit tests to test server.

RToml

 Rtoml features a hand written lexer and a hand written parser.
 Comply with the official TOML spec.
 Provide support for arrays, numbers, strings, multiline strings with escaping, inline tables and

table aliasing in keys.
 Write Unit tests for every module, perform integration testing and use existing toml-testing suite

Co-Chat

 Use C# and ASP.NET Core with razor pages to create a web chat interface.
 Use SignalR to implement websockets on frontend and backend.
 Write the frontend in pure CSS (without any framework), vanilla JS to handle UI components.

Croc-Look

 A cargo-expand alternative which allows you to debug your procedural macro
 cross-term as the backend with clap to parse CLI arguments.
 Features a watch option which opens a TUI which shows live reloaded generated code from

your macros.
 Parse rust structs, functions and trait impls to traverse through it for collecting exactly what the

user asked for without any clutter.
 Write a 5 min long blog post tutorial on croc-look.

Iso-rs

 Parse iso data json file using serde, phf-codgen to generate lookup tables at compile time.
 Build.rs generates lookup table and helper methods to query data.
 Place country capitals. Alpha_3, alpha_2 and region data generation behind feature flags to

save memory if not needed.

Sanitizer

 Provides a procedural macro to automatically generate sanitizing logic for fields with certain

types.
 Used syn to parse rust tokens, quote to generate code.
 Write unit tests to check sanitizers credibility

The XYZ University September 2021 – Apr 2025 (Anticipated)

Bachelor Of Computer Science

Languages: Rust, C#, JavaScript, HTML/CSS.

Technologies: Yugabyte, PostgreSQL, Git, GraphQL, gRPC, Figma, ASP.NET Core.

Bengaluru, Karnataka

Dec 2020 – March 2021

Bengaluru, Karnataka

May 2021 – March 2022

mailto:work@dakshu.xyz
https://dakshu.xyz/
https://github.com/Daksh14
https://keepworks.com/
https://keepworks.com/
https://github.com/OctaneWeb/Octane
https://github.com/Daksh14/Rtoml
https://github.com/Daksh14/Co-Chat
https://github.com/Daksh14/croc-look
https://dakshu.xyz/blog/dpmucl.html
https://github.com/dashxhq/iso-rs
https://github.com/dashxhq/sanitizer

